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High-Speed Computation of Single and Coupled
Microstrip Parameters Including Dispersion,
High-Order Modes, Loss and Finite Strip
Thickness

ROLF H. JANSEN, MEMBER, IEEE

Abstract—Based on an optimized rigorous hybrid mode solution
for covered/open zero thickness microstrip patterns the following
frequency dependent single and coupled line data are evaluated with
very short CP-times: The characteristic impedances of the even and
odd quasi-TEM modes, the propagation/attenuation constants and
associated strip current density components of these and the higher
order modes, the loss of the dominant modes under consideration of
nonuniform strip current, substrate surface roughness and dielectric
Ioss tangent. Finite strip thickness is introduced by a correction of the
strip width input values.

INTRODUCTION

'] URING the last years the use of microstrip lines in

microwave integrated circuits has been characterized
by two interdependent developments. On the one hand,
practical applications have been extended to higher frequen-
cies in order to fully exploit the technological advantages of
microstrip. This means an extension of the range of use to
nonstatic conditions and requires that the frequency de-
pendent line properties can be predicted precisely, especially
in broadband design. Therefore, on the theoretical side of
research an increased activity has been directed towards the
finding of rigorous numerically efficient hybrid mode solu-
tions for the associated boundary-value problems. The
results of these efforts are documented by many publica-
tions, whereof, however, only those shall be referenced here
which employ a one-dimensional formulation in terms of
the strip surface current density and typically result in low
matrix orders for a given prescribed accuracy, i.e., in low
numerical expense [1]-[12]. In addition, the solutions
referred to are exact in the sense that convergence to any
desired degree of output data accuracy can be studied.
Recent publications by Yamashita and Atsuki [11] and by
Farrar and Adams [12] show that the subject under discus-
sion is still of considerable interest. However, up to now
computations like those cited above are still widely regarded
as too laborious to compete with quasi-static formulas for
effective dielectric constants, characteristic impedances and
loss. One of the reasons for this might be that in the recent
papers no design parameters beyond propagation constants
are reported at all, though these should be available from the
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computations with little additional effort. Instead, designers
must make do with approximate results, for example, [13],
which are achieved under the assumption of a uniform
purely longitudinal current distribution and the accuracy of
which can only be estimated. Therefore, it is one of the goals
of this paper to demonstrate how the frequency dependent
properties of single and coupled microstrip lines can be
calculated rigorously, accurately and with further reduced
computer time and storage requirements, Next, for lines
fabricated on the most commonly used 25-mils alumina
substrate extensive numerical results shall be presented as
an aid in broad-band design.

COMPUTATIONAL PROCEDURE

The real symmetrical integral eigenvalue equation which
governs the behavior of propagation and attenuation modes
(z-dependence exp (—yz))on covered microstrip patterns as
represented by the cross sectional structure in Fig. 1 has
been described in detail before [10]. Iis derivation will,
therefore, not be repeated. Strictly speaking, it is just the
mathematically formulated requirement that the electrical
field E, tangential to the infinitely thin conducting strip
pattern should vanish by suitable selection of the longitu-
dinal and transverse surface current density components .J,
and J, existing thereon, namely

L (Zalk) o FoZealkfo S (J}(x") ,
b= JO |0 (zxz(kx)fgfazzz(kx)ﬁsf p) J“:(x/)) o s

- (£ = g

with x and nonzero contributions from x" on the strips. The
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abbreviations f, - -- f; denote sine and cosine functions of
argument k, - x and k, - x' where k, is the separation
constant with respect to the x direction. Their special
arrangement in (1) describes the even case, ie., with a
magnetic wall at x =0, whercas for the odd case the
subscripts 0 and E must be interchanged and the sign of Z,,
be altered. Asymmetric problems can be solved by forminga
composite integral equation which contains even and odd
terms [14].

The above formulation is entirely real and symmetrical
for both propagation and attenuation modes. This is a good
starting point for an optimal computer implementation and
reduces CP-time requirements a priori. It is achieved by the
normalizations [10]

ENE
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Jz(x) ° ﬁ J:(x)

which relate the physical field in Region I of Fig. 1 and the
current density to the quantities (bar) used in (1) via the
purely real or imaginary values of y. Indeed, no other values
of y are possible which is concluded from the fact that (1) can
be interpreted as the limit of the equivalent shielded micro-
strip equation with sidewalls removed to infinity [10]. By
comparison of the impedance terms Z,, -+ Z,. with those
occurring in an analogous formulation of the uncovered, i.e.,
open strip problem it can also be seen what happens if the
height s of the conducting cover plate is increased. For all
modes propagating with y = jf and f§ exceeding the wave-
number ko (/& of a plane wave in medium II the open and
the covered type solutions coincide in the limit of large h.
This for example prevails always in the case of quasi-TEM
modes. For values of ff smaller than ko\/%; ory = arealthe
open type equations become complex indicating the exist-
ence of leaky modes.

The numerical solution of (1) will now be achieved for
single and coupled lines by the method of moments with an
optimal choice of expansion and testing functions. First,due
to a variational interpretation given by Harrington [15] and
the self-adjointness of the integral operator in (1) as a
consequence of its symmetry, both types of functions should
be equal which means that Galerkin’s method [15] has to be
applied. The symmetrical matrix (4) resulting from this
conventional procedure contains clements like

—E;(x)

1] g
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(2)
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a3 = | Zul KK Ta(Ks) dK.,
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K,=wk,, N-x (3)

and the zeros of the corresponding determinant det (y) of
(A) render the required eigenvalues. Back-substitution into
det (y) then supplies the current distribution and from this
subsequently the electromagnetic field may be derived [10].
The terms f,;(K,), /(K ) can be recognized as the Fourier

sine and cosine transforms [16] of the transverse and
longitudinal current density expansion functions fy(x),
Ja(x). These are selected now in accordance with the follow-
ing criteria.

1) For rapid convergence of the solution they should
term by term satisfy the edge condition [17] which requires
that J (x) behaves like |x — x,|"? near the edge x, of a strip
whereas J,(x) approaches x, with the singularity
|x — x,|~ 2 This ensures the proper singular behavior of
the field for any degree of solution accuracy and is necessary
to achieve fast convergence of the characteristic impedance
values, which quite sensitively depend on the field distribu-
tion. In a similar fashion Silvester and Benedek [18] have
treated singularities in electrostatic microstrip problems.

2) In order to avoid the additional numerical expense
going along with the existence of extraneous, unphysical
solutions like those only recently reported by Farrar and
Adams [12] f,;(x) and f,(x) have to be chosen twice contin-
vously differentiable. This has been found empirically as the
result of test computations with various kinds of expansion
functions, among others pulse-functions, polynomials,
finite-element-polynomials of orders one to three, spline
functions (continuous first derivative), Fourier series expan-
sions with and without edge terms [10]. Spurious solutions
were detected only in cases where the above condition was
violated. Surely, continuity of the first two derivatives is a
physical property of the surface current density and it should
therefore be included a priori for reasons of convergence.
Furthermore, since the process of deriving the integral
equation (1) involves an extension of the originally underly-
ing Helmholtz operator, the use of expansion functions
which are discontinuous or have discontinuous derivatives,
i.e., outside the original domain, is most probably the cause
of extraneous solutions (see [15]) like the above.

3) The system of functions f;, f,; should be complete to
enable approximation of the exact solution to any degree of
accuracy by simply increasing the upper summation limit
Iax Of the expansion. In this way the numerical solutions can
be easily checked for their grade of convergence.

4) In view of the special kind of x-dependence which the x
and the z component of the magnetic field at y = 0 exhibit
due to deduction from the same electromagnetic potentials
[10] it has turned out advantageous to introduce an integral
relationship between the functions f;(x) and f,(x) corre-
sponding in their subscripts i. This is consistent with the
symmetry properties (even-odd) of the current components
and also with their edge behavior. In addition, since this
means relating the transforms f,;(K ) and f_,(K ) by simply a
factor of K, the CP-time necessary for generating one of
these transforms and also considerable storage is saved.
Moreover, introducing the auxiliary spectral function

G(K,) = Tl KK, = TulKL) - VKo 4)

leads to a symmetrization of the matrix elements (3) and
thus further reduces time requirements. In the limit of large
values of iy, only 37.5 percent of the matrix (4) is non-
redundant information due to its high degree of symmetry.
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5) All the physical insight gained from earlier computa-
tions should be incorporated into the choice of the expan-
sion functions so that every pair i of them can nearly
represent a modal current distribution and the matrix size
can be held small for a given required solution accuracy.

6) Besides the above more physical requirements at the
same time numerical aspects have to be taken into account.
These demand that the transforms fy;, /o, are available in a
not-too-complicated analytical form and that the final
metrix (4) is well conditioned {15}, [19]. None of the recent
authors [1]-[12] has applied these criteria altogether. In fact,
some of them use rather poorly behaved expansion func-
tions which seem hardly suited for the computation of
quantities reacting more sensitively to a bad choice than the
propagation constants. Therefore, as an optimal set of
current density basis functions with regard to the above
criteria for the even modes {E) on single microstrip linesit is
here proposed

foX)=1y1-X?
E(X) = (cos (inX) — Bolin))//1 — X*
BX)=0
f)=[ fEx)ax, 0sx<1 ()

withi= 1,2, -+, oo and the variable X running from O at the
middle of the strip to 1 at the edge. In the transform domain
this yields

ffo(Kx) = ZBO(K")

TE(K.) = Bo(K,, — in) + Bo(K, + im) — 2Bo(im)Bo(K.)
fO(Kx) = 0

FE(Ky) =Ta(K )/ Ky, 0 <K, < 0. (6)

In both equations B, denotes the zero order Bessel function
of the first kind. The term f%(X) describes the charge
density distribution of a strip in free space and has often been
used for approximate fundamental mode solutions, for
example by Denlinger [20]. Similarly. for the odd modes (O)
on a single line an expansion is used with the elements

F9X) = cos (inX) - /T — X2,

FoX) = df AXYdX,

fO(KL) = Bi(K, — in)/(K, — in) + By(K, + in)/(K, + i),
JaK) = K, - K, (7)

and with i from zero to infinity. B, stands for the first-order
Bessel function.

Regarding the even and odd modes on coupled microstrip
lines one has to bear in mind that in case of wide spacings s
solutions similar to those existing on two decoupled single
lines have to be expected. Especially, now two quasi-TEM
modes exist which in the limit of large s result in the same
fundamental mode on two single strips with a difference only

7

in the state of phase. For this reason the even and odd mode
sets of coupled line basis functions are both derived in
analogy to (5), (6). They shall not be given explicitly here.
That the proposed functions are surely an optimum set can
be seen from the fact that each pair i of them (together with
the zero order term for even modes) indeed turns out to
approximate a modal solution, as is obvious from an
example in the results section. With this property conver-
gence must be rapid once the number i, of expansion terms
exceeds the mode number i, which is, however, only one
aspect of numerical efficiency, The other aspect concerns the
numerical expense necessary to generate the eigenvalue
equations. Here, especially the fourth criterion provides a
reduction together with the normalization (2). Independent
of the choice of basis functions splitting up the matrix (4)
into the product of a diagonal matrix (Z) and a matrix (G)
which contains the frequency independent structural infor-
mation brings further advantage [10]. Comparative test runs
which partially or altogether did not take care of the
described criteria and computational details resulted in
CP-times which were higher by a factor of 3-100 (0.5-per-
cent numerical accuracy of the characteristic impedance).
This clearly confirms Harrington [15] who regards the
choice of the expansion functions as one of the main tasks
in any particular problem.

RESULTS

The computations described in this paper were performed
on a Control Data 6400 of the Technical University of
Aachen computer center. Unless otherwise noted the results
all refer to an alumina substrate with the following
specifications: Dielectric constant g = 9.9. dielectric loss
tangent tan & = 0.0005, substrate thickness d = 0.64 mm
and rms surface roughness dgp = 0.25 um. The copper
metallization deposited on this substrate is t = 5 um thick
and has a resistivity of p = 18 x 10~ ° Qmm. Whenever the
cover height h is not given explicitly a choice of & = 107 m,
i.e., the case of open microstrip prevails. The space above the
substrate is filled with air. The frequency region of interest is
0-16 GHz.

Since the above computations do not contain the effect of
finite strip thickness this has been introduced supplemen-
tarily for the quasi-TEM modes. In view of the small
percentage influence of t except for impracticably small strip
widths and spacings [21], [22] the excess work involved in a
rigorous solution of the finite thickness strip boundary value
problem can surely not be justified for design purposes.
Therefore, for the single microstrip nonzero values of t have
been taken into account by a modification of the strip width
w to w, which is given by Hammerstad and Bekkadal[22] as

wo=w+Aw=w-+t- (1 +In (2d/t))n,
w>d2n > 2t

wo=w+Aw=w+1- (14 In (@dnw/t))/m,
d2n >w>2t. (8)
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Fig. 2. Frequency dependent effective dielectric constant of the quasi-
TEM mode on single microstrip lines.
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Fig. 3. Frequency dispersion of the even and odd quasi-TEM mode on
coupled microstrip lines for a fixed width of w = 0.6 mm and varying
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Fig 4. Dispersion characteristics of the fundamental and the first two
higher order modes on a wide single microstrip line (g = 9.7, w = 9.15
mm), dashed curve: cover height h = 3d = 1.92 mm.

Similarly, for coupled microstrip lines and in the range of
technologically meaningful geometries useful corrected strip
width values have been found to be

wi=w+ Aw - (1 — 0.5 exp (—0.69Aw/At)),
At= t- d * 811/(3 * 81)
we =w+ Aw - (1 — 0.5 exp (—0.69Aw/At)) + At,

s> 2t (9)

where E again indicates the even and O the odd mode case.
At is the increase in strip width necessary to approximately
describe the additional odd mode coupling capacitance
arising from nonzero strip thickness. At the same time Aw/At
serves as a relative measure of distance from the symmetry
plane x = 0. For large spacings s the single line formula (8)
results.

As a first proof of the efficiency of the calculation method
under discussion the fundamental mode (EH,) frequency
dispersion charts Fig. 2 and Fig. 3 have been generated. The
effective dielectric constant &, appearing in these and other
plots is defined in the usual way as —(y/ko)* with k,
denoting the free-space wavenumber. Test measurements
like those in [10] throughout have revealed a coincidence of
better than 1 percent for various widths and spacings. The
CP-time necessary to compute one point of Fig 2 is
approximately 0.25s for a numerical accuracy of better
than 0.1 percent (first-order solution, i,,, = 1, matrix order

* Ymax

3). In all practical applications 0.3 percent is accurate
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Fig. 5. Normalized modal strip current density components of the first three modes on a wide single microstrip
line at a frequency of 12 GHz (¢, = 9.7, w = 9.15 mm).

enough and the zero order solution with less than 0.10 s
CP-time per point is sufficient. Except for very small spac-
ings where i, = 2 has been applied this is also valid for the
generation of Fig. 3. Due to the partitioning into even and
odd solutions time consumption for the single line first
higher order mode EH, is very similar too. So, charts like
these can be provided for broad-band design purposes with
little cost. Their physical interpretation will not be given
here. As an interesting fact, however, the nonmonotonical
behavior of the even mode with respect to the line spacingin
Fig. 3 shall be mentioned. This is due to the fact that for very
small spacings the even mode cannot form a noticeable
fringing field between the lines. So, an increase of s then
appears as an increase of the overall width 2w + 2s and is
accompanied by a higher value of .

Higher order modes on a wide single microstrip line and
the associated modal current distributions have been
computed in Fig 4 and Fig. 5. For comparison with open
line measurements made by Kompa [23] there a slightly
different substrate dielectric constant of ¢ = 9.7 is con-
sidered. The coincidence exhibited by Fig. 4 is excellent for
all modes. The dashed curves which for the higher order
solutions go down into the attenuation region refer to a
cover height of & = 3d = 1.92 mm. They show that for flat
packages, i.e., small values of h, the frequency dispersion of
the quasi-TEM (EH, - ) mode is rapidly increased in the low
gigahertz range. Modal normalized current density solu-
tions corresponding to Fig. 4 (open line) at 12 GHz are
depicted in Fig 5 with the relative magnitude of the
transverse and longitudinal components conserved. X =0
is the strip middle. As a consequence of the criteria incor-
porated into the expansion functions the solutions are
smoothly curved and highly accurate though only a matrix
of order 7 (i,,.x = 3) has been involved in their computation.

Further results to be given in Fig. 6 and Fig. 7 are charts of
the frequency dependent characteristic impedance Z of the
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Fig. 6. Single microstrip quasi-TEM characteristic impedance as a func-
tion of frequency.

fundamental modes on single and coupled microstrip lines.
The quantity Z, shown there is defined on a voltage per
longitudinal current basis with the voltage U equal to the
line integral over the electric field from the strip middle
perpendicular to the ground. This definition instead of one
of two other possible ones [13] has been chosen for reasons
of numerical efficiency. In fact, generation of the character-
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Fig. 7. Frequency dependent characteristic impedance of the even and
odd quasi-TEM mode on coupled microstrip lines for a fixed width of
w = 0.6 mm and varying spacings.

istic impedance in addition to the effective diclectric con-
stant increases CP-time by only a small fraction. However,
the mean 1.0-percent numerical accuracy in Figs. 6 and 7 is
less than that of the corresponding diagrams Figs. 2 and 3.
This verifies the assumption of Knorr and Tufekcioglu [13]
that the voltage U reacts sensitively to an assumed distribu-
tion of surface current. It should be noted therefore that the
zeroth-order expansion of this paper is already equivalent to
the improved distribution proposed in [13].

Another quantity which is useful in the modeling of
microstrip lines is the effective width wg [23], namely the
width of an equivalent parallel-plate waveguide of height d
and with the microstrip values of Z; and f. w. may at the
same time be interpreted as a measure of noticeable field
extension away from a strip or likewise as the effective width
of the current density path on the ground plane. Its depen-
dence on the actual strip width w of a single microstrip line is
depicted in Fig. 8 Due to the relation

Weee/W = Zo - d/(Zy - \/‘:ff)> (10)

the decrease of the w. with frequency is the accumulated
increase of Z; and the square-root of ..

Finally, loss calculations for the fundamental modes
which also do not substantially prolong the reported CP-
times shall be presented in Figs. 9 and 10. The knowledge of
total loss o, beyond that of frequency dispersion or equiv-
alently the knowledge of the quality factor Q = /2« is for
example important in the design of filters and couplers [24].
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Fig. 8. Relative effective width w./w of the parallel-plate waveguide
equivalents of single microstrip lines.
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Fig. 9. Total loss of single microstrip lines on alumina, dashed curves:
conduction loss without effect of substrate surface roughness.
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Its evaluation starts here from the conventional transmis-
sion line formula

Lot = Ycond. + Odrel. = OSR,/ZL + 05kO ’ Eetrf tan 5 (11)

with the line resistance per unit length R’ in (11) calculated
according to the relation

R' = (R,/Wess + Fy * Ry/w,) - Fgp,

P[P ax ([

0

2
JX)dXx ) (12)
and R, denoting the surface skin resistivity. In (12) which is
only valid for not too low frequencies the first term accounts
for conduction loss on the ground plane. The second one
describes loss originating from the lower side and the
sidewalls of a strip and is an appreciably higher term except
for very wide lines. Current flow on the upper side of the strip
conductor has been neglected so that for small line widths
the value of R" should be a bit too high. Thisis, however, not
serious since in practical circuits radiation loss caused by
statistical irregularities of the line cross section arises which
is not considered here and which also grows for smaller
widths. The increase of strip loss due to the nonuniform
current distribution compared with a uniform one is repre-
sented by the factor F, [25]. F, results from the eigen-
solutions by numerical integration and under consideration
of the edge singularity of the strip of finite thickness

31

(rectangular bar on dielectric, see [17]). For single micro-
strips and in the range of widths as given in Fig. 2 it varies
between about 1.35-1.15 approaching 1.00 in the parallel
plate line limit w > d. In agreement with the calculations
made by Horton [26] and as visible in Fig. 10 tightly coupled
lines may exhibit large values of F; for the odd quasi-TEM
mode. A further factor denoted F gz is provided by Hammer-
stad and Bekkadal [22] and describes the additional loss due
to substrate surface roughness. According to (11) all these
contributions are incorporated into the charts Fig. 9 and
Fig. 10. The dashed curves in Fig. 9 only serve for compar-
ison and do neither include surface roughness nor dielectric
loss. Their deviation from the corresponding solid line curve
is mainly the effect of neglection of roughness for the narrow
line and of tan J for the wide one. The accuracy of the loss
calculations Figs. 9 and 10 should be adequate for most
practical purposes.

CONCLUSION

A high speed numerical solution of the hybrid mode
problem of single and coupled microstrip lines has been
presented. Based thereon frequency dependent microstrip
design data have been calculated with up to now unknown
computational efficiency. The procedure may easily be
extended to more complicated strip patterns [14].
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A Simple Method for Determining the Green’s
Function for a Large Class of MIC Lines Having
Multilayered Dielectric Structures

RAYMOND CRAMPAGNE, MAJID AHMADPANAH, aND JEAN-LOUIS GUIRAUD

Abstract—To find the characteristic parameters of the wave
propagation in microstrip structures, several Green’s function
methods have already been developed, corresponding to particular
geometric configurations. In this paper, three of these methods are
synthesized, showing that the final equations in the different cases are
identical. Moreover, using the transverse transmission line theory,
the Green’s function is solved numerically for an N-layer dielectric
structure.

1. INTRODUCTION

ICROSTRIP transmission lines are largely used in
the microwave integrated circuits. Although being a
simplifying approximation, the quasi-TEM approximation
is well known to have proved useful in giving quite accurate
results for practical purposes. The characteristic parameters
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of such lines have been calculated, using various methods.
The method utilizing Green’s potential function lets one
transform a differential equation to an integral one; where
the unknown quantity becomes the charge dénsity. This is
solved easily by numerical techniques using the moment and
the point matching methods.

In this method, the conductor geometry can be defined
exactly; in particular the conductor’s thickness and the
dissymetry in the strip configuration can be taken into
account. However, we assume infinitely thin symmetric
conductors because these parameters do not modify the
determination of the Green’s function.

The present paper tries to generalize the studies done on
microstrip lines with two or three layers of dielectric [1]-[3]
in that it determines the Green’s function for multilayer
microstrip lines having the same conductor geometry as
used in previous studies. Our main aim had been at present-
ing the results in analytic form which lends itself to numeric
solution, requiring very little modification in the programs
already existing.
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