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Abstract—Based on an optimized rigorous hybrid mode solution

fior covered/open zero thickness microstrip patterns the following
frequency dependent single and coupled tine data are evaluated with
very short CP-times: The characteristic impedances of the even and

add quasi-TEM modes, the propagation/attenuatiou constauts and
associated strip current density components of these and the higher
order modes, the 10SSof the dominant modes uuder consideration of
nonuniform strip current, substrate surface roughness and dielectric

loss tangent. Finite strip thickness is introduced by a comectiou of the

strip width input valnes.

INTRODUCTION

ID

URING the last years the use of microstrip lines in

microwave integrated circuits has been characterized

~~y two interdependent developments. On the one hand,
practical applications have been extended to higher frequen-

cies in order to fully exploit the technological advantages of

rnicrostrip. This means an extension of the range of use to

nonstatic conditions and requires that the frequency de-

pendent line properties can be predicted precisely, especially

in broadband design. Therefore, on the theoretical side of

research an increased activity has been directed towards the

finding of rigorous numerically efficient hybrid mode solu-

tions for the associated boundary-value problems. The

results of these efforts are documented by many publica-

tions, whereof, however, only those shall be referenced here

which employ a one-dimensional formulation in terms of

the strip surface current density and typically result in low

matrix orders for a given prescribed accuracy, i.e., in low

numerical expense [1]–[12]. In addition, the solutions

referred to are exact in the sense that convergence to any

c~esired degree of output data accuracy can be studied.

Recent publications by Yamashita and Atsuki [11] and by

Farrar and Adams [12] show that the subject under discus-

sion is still of considerable interest. However, up to now

computations like those cited above are still widely regarded

as too laborious to compete with quasi-static formulas for

effective dielectric constants, characteristic impedances and

loss. One of the reasons for this might be that in the recent

papers no design parameters beyond propagation constants

are reported at all, though these should be available from the
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Fig 1. Representative covered microstrip coupled line geometry,

computations with little additional effort, Instead, designers

must make do with approximate results, for example,-[13],

which are achieved under the assumption of a uniform

purely longitudinal current distributicm and the accuracy of

which can only be estimated. Therefore, it is one of the goals

of this paper to demonstrate how the frequency dependent

properties of single and coupled microstrip lines can be

calculated rigorously, accurately and with further reduced

computer time and storage requirements, Next, for lines

fabricated on the most commonly used 25-roils alumina

substrate extensive numerical results shall be presented as

an aid in broad-band design.

CorvtwmAmoNAL PROCEIXJRE

The real symmetrical integral eigenvalue equation which

governs the behavior of propagation and attenuation modes

(z-dependence exp (– yz)) on covered lmicrostrip patterns as

represented by the cross sectional structure in Fig. 1 has

been described in detail before [10], Its derivation will,

therefore, not be repeated, Strictly spea]king, it is just the

mathematically formulated requirement that the electrical

field -E, tangential to the infinitely thin conducting strip

pattern should vanish by suitable selection of the longitu-

dinal and transverse surface current density components ~.

and IX existing thereon, namely

(1~E.(x) ~ o

E=(X)
(1)

with x and nonzero contributions from x’ on the strips. The

0018 -9480/78/0200-0075 $00.75 01978 IEEE



76 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 2, FEBRUARY 1978

abbreviations ~0 ~~”~j denote sine and cosine functions of

argument k. ‘ x and k. “ x’ where kX is the separation

constant with respect to the x direction. Their special

arrangement in (1) describes the even case, i.e., with a

magnetic wall at x = O, whereas for the odd case the

subscripts Oand E must be interchanged and the sign of ZXZ

be altered. Asymmetric problems can be solved by forming a

composite integral equation which contains even and odd

terms [14].

The above formulation is entirely real and symmetrical

for both propagation and attenuation modes. This is a good

starting point for an optimal computer implementation and

reduces CP-time requirements a priori. It is achieved by the

normalizations [10]

(2)

which relate the physical field in Region I of Fig. 1 and the

current density to the quantities (bar) used in (1) via the

purely real or imaginary values of y. Indeed, no other values

of y are possible which is concluded from the fact that(1) can

be interpreted as the limit of the equivalent shielded micro-

strip equation with sidewalls removed to infinity [10]. By

comparison of the impedance terms Z.. ~~” Z== with those

occurring in an analogous formulation of the uncovered, i.e.,

open strip problem it can also be seen what happens if the

height h of the conducting cover plate is increased. For all

modes propa sting with y = j~ and /3 exceeding the wave-
Pnumber k. ~ 611 of a plane wave in medium II the open and

the covered type solutions coincide in the limit of large h.

This for example prevails always in the case of quasi-TEM

modes. For values of/3 smaller than k.& or y = a real the

open type equations become complex indicating the exist-

ence of leaky modes.

The numerical solution of (1) will now be achieved for

single and coupled lines by the method of moments with an

optimal choice of expansion and testing functions. First, due

to a variational interpretation given by Barrington [15] and

the self-adjointness of the integral operator in (1) as a

consequence of its symmetry, both t ypes of functions should

be equal which means that Galerkin’s method [15] has to be

applied. The symmetrical matrix (-4 ) resulting from this

conventional procedure contains elements like

“R= r zxz(Y$~x)Txi(~x)zk(~x) dKx
o

KX = wkX, N+m (3)

and the zeros of the corresponding determinant det (y) of

(A) render the required eigenvalues. Back-substitution into

det (y) then supplies the current distribution and from this

subsequently the electromagnetic field may be derived [10].

The terms TXi(KX), zk(Kx) can be recognized as the Fourier

sine and cosine transforms [16] of the transverse and

lon@tudinal current density expansion functions jXi(x),

~z~(x). These are selected now in accordance with the follow-

ing criteria.

1) For rapid convergence of the solution they should

term by term satisfy the edge condition [17] which requires

that JX(X) behaves like Ix – x. 11’2near the edge x, of a strip

whereas JZ(X) approaches .x, with the singularity

lx-x.l-’’Th”h” 1s ensures the proper singular behavior of

the field for any degree of solution accuracy and is necessary

to achieve fast convergence of the characteristic impedance

values, which quite sensitively depend on the field distribu-

tion. In a similar fashion Silvester and Benedek [18] have

treated singularities in electrostatic microstrip problems.

2) In order to avoid the additional numerical expense

going along with the existence of extraneous, unphysical

solutions like those only recently reported by Farrar and

Adams [12] ~xi(x) and&(x) have to be chosen twice contin-

uously differentiable. This has been found empirically as the

result of test computations with various kinds of expansion

functions, among others pulse-functions, polynomials,

finite-element-polynomials of orders one to three, spline

functions (continuous first derivative), Fourier series expan-

sions with and without edge terms [10]. Spurious solutions

were detected only in cases where the above condition was

violated. Surely, continuity of the first two derivatives is a

physical property of the surface current density and it should

therefore be included a priori for reasons of convergence.

Furthermore, since the process of deriving the integral

equation (1) involves an extension of the originally underly-

ing Helmholtz operator, the use of expansion functions

which are discontinuous or have discontinuous derivatives,

i.e., outside the original domain, is most probably the cause

of extraneous solutions (see [15]) like the above.

3) The system of functions ~Xil~Z~ should be complete to

enable approximation of the exact solution to any degree of

accuracy by simply increasing the upper summation limit

i~~Xof the expansion. In this way the numerical solutions can

be easily checked for their grade of convergence.

4) In view of the special kind ofx-dependence which the x

and the z component of the magnetic field at y = O exhibit

due to deduction from the same electromagnetic potentials

[10] it has turned out advantageous to introduce an integral

relationship between the functions ~ti(x) and jzi(x) corre-

sponding in their subscripts i. This is consistent with the

symmetry properties (even-odd) of the current components
and also with their edge behavior. In addition, since this

means relating the transforms~Xi(KX) and~:i(KX) by simply a

factor of KX the CP-time necessary for generating one of

these transforms and also considerable storage is saved.

Moreover. introducing the auxiliary spectral function

leads to a symmetrization of the matrix elements (3) and

thus further reduces time requirements. In the limit of large

values of i~,X only 37.5 percent of the matrix (A) is non-
redundant information due to its high degree of symmetry.
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5) All the physical insight gained from earlier computa-

tions should be incorporated into the choice of the expan-

sion functions so that every pair i of them can nearly

represent a modal current distribution and the matrix size

can be held small for a given required solution accuracy.

6) Besides the above more physical requirements at the

same time numerical aspects have to be taken into account.

These demand that the transforms~.i,~,~ are available in a

not-too-complicated analytical form and that the final

matrix (A) is well conditioned [15], [19]. None of the recent

authors [1]–[12] has applied these criteria altogether. In fact,

some of them use rather poorly behaved expansion func-

tions which seem hardly suited for the computation of

quantities reacting more sensitively to a bad choice than the

propagation constants. Therefore, as an optimal set of

current density basis functions with regard to the above

criteria for the even modes (E) on single microstrip lines it is

here proposed

f:o(x) = ~ld’
f:,(x) = (Cos (i7cx)- Bo(i7t))/J’F7F

f ;i(x) = [x.f~i(x’) dX’, O<x<l (5)
‘o

with i=l,2, ”, m and the variable X running from Oat the

middle of the strip to 1 at the edge. In the transform domain

this yields

In both equations B. denotes the zero order Bessel function

of the first kind. The term ./_~O(/X) describes the charge

density distribution of a strip in free space and has often been

used for approximate fundamental mode solutions, for

example by Denlinger [20]. Similarly, for the odd modes (0)

on a single line an expansion is used with the elements

f;i(x) = Cos (~~x) “ /’=,
f:(x) = df~i(x)/dx,

fiJKJ = B,(K. – iTC)/(K. – in) + B,(K. + iTC)/(Kx + in),

fii(Kx) = K. ~~i(Kx) (7)

and with i from zero to infinity. B ~stands for the first-order

Bessel function.

Regarding the even and odd modes on coupled microstrip

lines one has to bear in mind that in case of wide spacingss
scllutions similar to those existing on two decoupled single

lines have to be expected. Especially, now two quasi-TENl

modes exist which in the limit of larges result in the same

fundamental mode on two single strips with a difference only

in the state of phase. For this reason the even and odd mode

sets of coupled line basis functions are both derived in

analogy to (5), (6). They shall not be given explicitly here.

That the proposed functions are surely an optimum set can

be seen from the fact that each pair i of them (together with

the zero order term for even modes) indeed turns out to

approximate a modal solution, as ifs obvious from an

example in the results section. With this lproperty conver-

gence must be rapid once the number im,Xofexpansion terms

exceeds the mode number i, which is, however, only one

aspect of numerical efficiency, The other aspect concerns the

numerical expense necessary to generat(e the eigenvalue

equations. Here, especially the fourth criterion provides a

reduction together with the normalization (2). Independent

of the choice of basis functions splitting LLp the matrix (A)

into the product of a diagonal matrix (Z) and a matrix (G)

which contains the frequency indepencl ent structural infor-

mation brings further advantage [10]. Comparative test runs

which partially or altogether did not take care of the

described criteria and computational details resulted in

CP-times which were higher by a factor of 3-100 (0,5-per-

cent numerical accuracy of the characteristic impedance).

This clearly confirms Barrington [15] who regards the

choice of the expansion functions as one of the main tasks

in any particular problem.

RESULTS

The computations described in this paper were performed

on a Control Data 6400 of the Technical University of

Aachen computer center. Unless otherwise noted the results

all refer to an alumina substrate with the following

specifications: Dielectric constant q Z=9,9. dielectric loss

tangent tan d = 0.0005, substrate thickness d = 0.64 mm

and rms surface roughness dsR = 0.25 pm. The copper

metallization deposited on this substrate is t = 5 ~m thick

and has a resistivity of p = 18 x 10--6 !Qmlm. Whenever the

cover height h is not given explicitly a choice of h = 107 m,

i.e., the case of open microstrip prevails The space above the

substrate is filled with air. The frequency region of interest is

0-16 CiHz.

Since the above computations do not ccmtain the effect of

finite strip thickness this has been introduced supplemen-

tarily for the quasi-TEM modes. In view of the small

percentage influence oft except for impracticably small strip

widths and spacings [21], [22] the excess work involved in a
rigorous solution of the finite thickness strip boundary value

problem can surely not be justified for design purposes.

Therefore, for the single microstrip nonzero values oft have

been taken into account by a modification of the strip width

w to w, which is given by Hammerstad and Bekkadal [22] as

W, = W + LiW = W + t“(1 + hl (2d/t))/n,

W > d/2z > 2t

w, = w + Aw = W + t.(1+ h (hv/t))/7t,

@n > w > Zt. (8)
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Fig. 2. Frequency dependent effective dielectric constant of the quasi-

TEM- mode on single microstrip lines.
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—. —.— .—. —.— .—
Ee51:9.7 EHO

0
/

o/
o.. MEASURED BY

//

/
// KOMPA [211

/

I /’

o 3 6 9 12 15 18

FREQUENCY GHz

Fig. 4. Dispersion characteristics of the fundamental and the first two
higher order modes on a wide single microstrip line (e, = 9.7, w = 9,15

mm), dashed curve: cover height h = 3d = 1.92 mm.

Similarly, for coupled microstrip lines and in the range of

technologically meaningful geometries useful corrected strip

width values have been found to be

w: = w + Aw ~ (1 – 0.5 exp (– O.69Aw/At)),

At= t ~d “ eI1/(s . q)

w: = w + Aw ~ (1 – 0,5 exp (– O.69AW/At)) + At,

s > jt (9)

where E again indicates the even and O the odd mode case.

At is the increase in strip width necessary to approximately

describe the additional odd mode coupling capacitance

arising from nonzero strip thickness. At the same time Aw/At

serves as a relative measure of distance from the symmetry

plane x = O. For large spacings s the single line formula (8)

results.
As a first proof of the efficiency of the calculation method

under discussion the fundamental mode (.EHO) frequency

dispersion charts Fig. 2 and Fig. 3 have been generated. The

effective dielectric constant S.ff appearing in these and other
plots is defined in the usual way as – (y/kO)z with kO
denoting the free-space wavenumber. Test measurements

like those in [10] throughout have revealed a coincidence of

better than 1 percent for various widths and spacings. The

CP-time necessary to compute one point of Fig. 2 is
approximately 0.25 s for a numerical accuracy of better

than 0.1 percent (first-order solution, i~,X = 1, matrix order

3). In all practical applications 0.3 percent is accurate
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Fig. 5. Normalized modal strip current density components of the first three modes on a wide single mi(;rostrip

line at a frequency of 12 GHz (e, = 9.7, w = 9.15 mm).

enough and the zero order solution with less than 0.10 s

CP-time per point is sufficient. Except for very small spac-

ings where i~,, = 2 has been applied this is also valid for the
generation of Fig. 3. Due to the partitioning into even and

odd solutions time consumption for the single line first

higher order mode EHI is very similar too. So, charts like

these can be provided for broad-band design purposes with

little cost. Their physical interpretation will not be given

here. As an interesting fact, however, the nonmonotonical

behavior of the even mode with respect to the line spacing in

Fig. 3 shall be mentioned. This is due to the fact that for very

small spacings the even mode cannot form a noticeable

fringing field between the lines. So, an increase of s then

appears as an increase of the overall width 2W + 2s and is

accompanied by a higher value of S,ff.

IHigher order modes on a wide single microstrip line and

the associated modal current distributions have been

computed in Fig. 4 and Fig. 5. For comparison with open

line measurements made by Kompa [23] there a slightly

different substrate dielectric constant of c,= 9.7 is con-

sidered. The coincidence exhibited by Fig. 4 is excellent for

all modes. The dashed curves which for the higher order

solutions go down into the attenuation region refer to a

cover height of h = 3d = 1.92 mm. They show that for flat

packages, i.e., small values of k, the frequency dispersion of

the quasi-TEM (EHO -) mode is rapidly increased in the low

gigahertz range. Modal normalized current density solu-

tions corresponding to Fig. 4 (open line) at 12 GHz are

depicted in Fig. 5 with the relative magnitude of the

transverse and longitudinal components conserved. X = O

is the strip middle. As a consequence of the criteria incor-

porated into the expansion functions the solutions are

smoothly curved and highly accurate though only a matrix

of order 7 (t~., = 3) has been involved in their computation.

Further results to be given in Fig. 6 and Fig. 7 are charts of

the frequency dependent characteristic impedance Z~ of the
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Fig. 6. Single microstrip quasi-TEM characteristic impedance as a func-

tion of frequency.

fundamental modes on single and coupled microstrip lines.

The quantity Z~ shown there is defined on a voltage per

longitudinal current basis with the voltage U equal to the

line integral over the electric field frclm the strip middle

perpendicular to the ground. This definition instead of one

of two other possible ones [13] has been chosen for reasons
of numerical efficiency. In fact, generation of the character-
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odd quasi-T13M mode on coupled microstrip lines fora fixed width of
w = 0.6 mm and varying spacings.

istic impedance in addition to the effective dielectric con-

stant increases CP-time by only a small fraction. However,

the mean I. O-percent numerical accuracy in Figs. 6 and 7 is

less than that of the corresponding diagrams Figs. 2 and 3.

This verifies the assumption of Knorr and Tufekcioglu [13]

that the voltage U reacts sensitively to an assumed distribu-

tion of surface current. It should be noted therefore that the

zeroth-order expansion of this paper is already equivalent to

the improved distribution proposed in [13].

Another quantity which is useful in the modeling of

microstrip lines is the effective width Weff [23], namely the

width of an equivalent parallel-plate waveguide of height d
and with the microstrip values of Z~ and P. W.ff may at the

same time be interpreted as a measure of noticeable field

extension away from a strip or likewise as the effective width

of the current density path on the ground plane. Its depen-

dence on the actual strip width w of a single microstrip line is

depicted in Fig. 8. Due to the relation

W,ff/W = 20 “ d/(ZL “ &f), 20= 1207A2 (lo)

the decrease of the W,ff with frequency is the accumulated

increase of Z~ and the square-root of Eeff.

Finally, loss calculations for the fundamental modes

which also do not substantially prolong the reported CP-

times shall be presented in Figs. 9 and 10. The knowledge of

total loss utOtbeyond that of frequency dispersion or equiv-

alently the knowledge of the quality factor Q = /?/2u is for

example important in the design of filters and couplers [24].
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Fig. 8. Relative effective width w,ff/w of the parallel-plate waveguide

equivalents of single microstrip lines.
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Fig. 9. Total loss of single microstnp hnes on alumma, dashed curves:

conduction loss without effect of substrate surface roughness.
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11:sevaluation starts here from the conventional transmis-

sion line formula

%01 =Cl cond, + ad,el, = 0.5R’/ZL + 0.5/20 & ~tan d (11)

with the line resistance per unit length R’ in (11) calculated

according to the relation

R’ = (R, /weff + FJ “ R~/w,) F,s~,

and R, denoting the surface skin resistivity. In (12) which is

only valid for not too low frequencies the first term accounts

for conduction loss on the ground plane. The second one

describes loss originating from the lower side and the

sidewalls of a strip and is an appreciably higher term except

for very wide lines. Current flow on the upper side of the strip

conductor has been neglected so that for small line widths

the value of R’ should be a bit too high. This is, however, not

ssrious since in practical circuits radiation loss caused by

statistical irregularities of the line cross section arises which

is not considered here and which also grows for smaller
widths. The increase of strip loss due to the nonuniform

current distribution compared with a uniform one is repre-

sented by the factor FJ [25]. FJ results from the eigen-

solutions by numerical integration and under consideration

clf the edge singularity of the strip of finite thickness

81

(rectangular bar on dielectric, see [17]). For single micro-

strips and in the range of widths as given in Fig. 2 it varies

between about 1.35-1.15 approaching 1.00 in the parallel

plate line limit w > d. In agreement with the calculations

made by Horton [26] and as visible in Fig. 10 tightly coupled

lines may exhibit large values of FJ for tlhe odd quasi-TEM

mode. A further factor denoted F~~ is provided by Hammer-

stad and Bekkadal [22] and describes the additional loss due

to substrate surface roughness. According to (11) all these

contributions are incorporated into the charts Fig. 9 and

Fig. 10. The dashed curves in Fig. 9 cmly serve for compar-

ison and do neither include surface roughness nor dielectric

loss. Their deviation from the corresponding solid line curve

is mainly the effect of neglection of roughness for the narrow

line and of tan d for the wide one. The accuracy of the loss

calculations Figs. 9 and 10 should be adequate for most

practical purposes.

CONCLUSION

A high speed numerical solution of the hybrid mode

problem of single and coupled microstrip lines has been

presented. Based thereon frequency dependent microstrip

design data have been calculated with up to now unknown

computational efficiency. The procedure may easily be

extended to more complicated strip patterns [14].
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A Simple Method for Determining the Green’s
Function for a Large Class of MIC Lines Having

Multilayered Dielectric Structures
RAYMOND CRAMPAGNE, MAJID AHMADPANAH, AND JEAN-LOUIS GUIRAUD

Abstract—To find the characteristic parameters of the wave

propagation in microstrip structures, several Green’s function

methods have already been developed, corresponding to particular

geometric configurations. In this paper, three of these methods are
synthesized, showing that the final equations in the different cases are
identical. Moreover, using the transverse transmission line theory,
tbe Green’s function is solved numerically for an N-layer dielectric
strncture.

I. INTRODUCTION

M ICROSTRIP transmission lines are largely used in
the microwave integrated circuits. Although being a

simplifying approximation, the quasi-TEM approximation

is well known to have proved useful in giving quite accurate

results for practical purposes. The characteristic parameters
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of such lines have been calculated, using various methods.

The method utilizing Green’s potential function lets one

transform a differential equation to an integral one; where

the unknown quantity becomes the charge ddi’nsity. This is

solved easily by numerical techniques using the moment and

the point matching methods.

In this method, the conductor geometry can be defined

exactly; in particular the conductor’s thickness and the

dissymmetry in the strip configuration can be taken into

account. However, we assume infinitely thin symmetric

conductors because these parameters do not modify the

determination of the Green’s function.

The present paper tries to generalize the studies done on

microstrip lines with two or three layers of dielectric [1]-[3]

in that it determines the Green’s function for multilayer

microstrip lines having the same conductor geometry as

used in previous studies. Our main aim had been at present-

ing the results in analytic form which lends itself to numeric

solution, requiring very little modification in the programs

already existing.
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